To content

M. Sc. Kevin Hares

Further Information about Kevin Hares

Curriculum Vitae

Kevin Hares started studying chemistry at TU Dortmund in October 2013 and finished his bachelor thesis with the topic “Development of a Tandem-catalytic Conversion of Butadiene into C10-unsaturated Esters” in 2016.

He continued with the masters at TU Dortmund, but went to the UK in September 2017 and studied at University College London for 9 months via the Erasmus+ exchange program. At UCL he completed a research project with the topic “Kinetic Studies on SSZ-13 and Synthesis of Hierarchical SSZ-13 using Chitosan as Macro-Template”. During this time and further until March 2019 Kevin received the “Deutschlandstipendium” scholarship by BASF SE.

In 2019 he finished his masters with a thesis on “The Palladium Catalyzed Carboxytelomerization of 1,3-Butadiene with Carboxylic Acids - An Atom Economic Route Towards Mixed Anhydrides” at the chair of industrial chemistry (TC).

Since April 2019 Kevin works as a research associate at the laboratory of Industrial Chemistry.

Research Topic

The modern chemical industry requires sustainable transformations of basic feedstock to be more cost efficient and less pollutive. A novel approach for this is the use of catalysts, which can be able to lower the activation energy of a specific reaction pathway and therefore lead to highly selective and active reaction systems.

Some reactions, which require similar catalysts and reaction conditions, can be carried simultaneously in a single reactor. If the same catalyst catalyzes these reactions, the reaction is called tandem catalysis depicted in figure 1. 

Reaktionsweg Tandem Katalyse: Reaktionsweg 1 ohne Zwischenprodukt über Katalysator (schnell): Reaktionsweg 2: über zwischenprodukt, vom gleichen Katalysator wie 1 katlaysiert (langsam)

Conventional consecutive reaction require multiple steps and often a work up procedure between each step. These require energy and other resources, which can be saved in tandem-catalyzed reactions, because in this case the reaction system is able to convert A directly to C in one reaction set up (figure 1). Therefore, this “fast track” rout saves energy, time and resources.

Amination reactions and catalyst design

The synthesis of amines and especially primary amines is still challenging and subject of current research. One prominent route towards amines is the amination of alcohols. However, the selectivity of this reaction is difficult to control, since the resulting non-tertiary amines can undergo unwanted consecutive reactions.

A novel route for the synthesis of amines would be the amination of esters, since they are readily available. Additionally esters can be provided through renewable sources such as plant oil, hence this route can be based on a renewable feedstock. This reaction set up can be carried out in two steps or in a tandem-catalyzed manner as depicted in figure 2.

Oben: Established Two-Step-Reaction: Ester reagiert mit L (Triphos derivative) und H2 zu Alkohol, dieser reagiert erneut mit L und HNR'R'' ( R',R'' = H, Alkyl, Aryl) zu Amin; unten: Tandem Reaktion ohne Zwischenprodukt mit L, H2, HNR'R'' von Ester zu Amin
Figure 2: Ester amination reactions: tow-step vs. tandem-reaction.

The mechanism of this reaction is not understood in detail, therefore it is of interest to determine key reaction steps and intermediates. This can be achieved through variation of the catalyst system. In addition, tailored ligands can increase the productivity of the system or optimize its selectivity. However, tailored ligands are not commercial available in most cases and have to be synthesized, which is an important part of this research.

Carboxytelomerization – A useful tool in Synthesis

Carboxytelomerization in another example for a highly atom economic tandem catalyzed reaction (figure 3). It is capable of transforming basic starting material into valuable unsaturated products, such as unsaturated esters. The reaction is well understood using alcohols as starting material such as methanol. However, recent studies have shown the flexibility of the reaction.

Reaktion 1,3- Dibuten und NuH (Nu = Nucleophilic Group) unter Palladium Katalyse zu langkettigem Keton mit Nu Gruppe
Figure 3: Carboxytelomerization - Powerful tool in synthesis.

For example, it was possible to convert amines and branched dienes into their corresponding esters and amides (figure 4). The scope of the reaction can still be diversified and result in new valuable products efficiently to expand the synthesis-tool carboxytelomerization.

Reaktionsprodukte: v.l.n.r. Amid, Ester, Keton mit Nucleophiler Gruppe
Figure 4: Different Product accessible through carboxytelomerization.

Publications & Conferences

  • Hares, K., Vogelsang, D., Wernsdörfer, C.S., Panke, D., Vogt, D., Seidensticker, T. (2022). „Palladium-catalyzed synthesis of mixed anhydrides via carbonylative telomerization” Catal. Sci. Technol., 12, 3992-4000, DOI: 10.1039/D2CY00486K .
  • Vogelsang, D. , Vondran, J. , Hares, K. , Schäfer, K. , Seidensticker, T. , Vorholt, A. J. (2019). "Palladium Catalysed Acid-Free Carboxytelomerisation of 1,3-Butadiene with Alcohols Accessing Pelargonic Acid Derivatives Including Triglycerides under Selectivity Control". Adv. Synth. Catal. 362 (3), 679-687, DOI: 10.1002/adsc.201901383.
  • Vogelsang, D. , Raumann, B. A. , Hares, K. , Vorholt, A. J. (2017). "From Carboxytelomerization of 1,3‐Butadiene to Linear α,ω‐C10‐Diester Combinatoric Approaches for an Efficient Synthetic Route". Chem. Eur. J. 24 (9), 2264-2269, DOI: 10.1002/chem.201705381.
  • March 2021, Weimar, Germany, 54. Jahrestreffen Deutscher Katalytiker, "Expanding the synthesis tool carboxytelomerization-More efficient amide synthesis and new products"

Location & approach

The campus of TU Dort­mund University is located close to interstate junction Dort­mund West, where the Sauerlandlinie A 45 (Frankfurt-Dort­mund) crosses the Ruhrschnellweg B 1 / A 40. The best interstate exit to take from A 45 is “Dort­mund-Eichlinghofen” (closer to South Campus), and from B 1 / A 40 “Dort­mund-Dorstfeld” (closer to North Campus). Signs for the uni­ver­si­ty are located at both exits. Also, there is a new exit before you pass over the B 1-bridge leading into Dort­mund.

To get from North Campus to South Campus by car, there is the connection via Vogelpothsweg/Baroper Straße. We recommend you leave your car on one of the parking lots at North Campus and use the H-Bahn (suspended monorail system), which conveniently connects the two campuses.

TU Dort­mund University has its own train station (“Dort­mund Uni­ver­si­tät”). From there, suburban trains (S-Bahn) leave for Dort­mund main station (“Dort­mund Hauptbahnhof”) and Düsseldorf main station via the “Düsseldorf Airport Train Station” (take S-Bahn number 1, which leaves every 20 or 30 minutes). The uni­ver­si­ty is easily reached from Bochum, Essen, Mülheim an der Ruhr and Duisburg.

You can also take the bus or subway train from Dort­mund city to the uni­ver­si­ty: From Dort­mund main station, you can take any train bound for the Station “Stadtgarten”, usually lines U41, U45, U 47 and U49. At “Stadtgarten” you switch trains and get on line U42 towards “Hombruch”. Look out for the Station “An der Palmweide”. From the bus stop just across the road, busses bound for TU Dort­mund University leave every ten minutes (445, 447 and 462). Another option is to take the subway routes U41, U45, U47 and U49 from Dort­mund main station to the stop “Dort­mund Kampstraße”. From there, take U43 or U44 to the stop “Dort­mund Wittener Straße”. Switch to bus line 447 and get off at “Dort­mund Uni­ver­si­tät S”.

The AirportExpress is a fast and convenient means of transport from Dortmund Airport (DTM) to Dortmund Central Station, taking you there in little more than 20 minutes. From Dortmund Central Station, you can continue to the university campus by interurban railway (S-Bahn). A larger range of international flight connections is offered at Düsseldorf Airport (DUS), which is about 60 kilometres away and can be directly reached by S-Bahn from the university station.

The H-Bahn is one of the hallmarks of TU Dort­mund University. There are two stations on North Campus. One (“Dort­mund Uni­ver­si­tät S”) is directly located at the suburban train stop, which connects the uni­ver­si­ty directly with the city of Dort­mund and the rest of the Ruhr Area. Also from this station, there are connections to the “Technologiepark” and (via South Campus) Eichlinghofen. The other station is located at the dining hall at North Campus and offers a direct connection to South Campus every five minutes.

The facilities of TU Dortmund University are spread over two campuses, the larger Campus North and the smaller Campus South. Additionally, some areas of the university are located in the adjacent “Technologiepark”.

Site Map of TU Dortmund University (Second Page in English).